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Abstract— In this paper, we tackle the challenge of predicting
the unseen walls of a partially observed environment as a set
of 2D line segments, conditioned on occupancy grids integrated
along the trajectory of a 360◦ LIDAR sensor. A dataset of such
occupancy grids and their corresponding target wall segments is
collected by navigating a virtual robot between a set of randomly
sampled waypoints in a collection of office-scale floor plans from a
university campus. The line segment prediction task is formulated
as an autoregressive sequence prediction task, and an attention-
based deep network is trained on the dataset. The sequence-
based autoregressive formulation is evaluated through predicted
information gain, as in frontier-based autonomous exploration,
demonstrating significant improvements over both non-predictive
estimation and convolution-based image prediction found in the
literature. Ablations on key components are evaluated, as well
as sensor range and the occupancy grid’s metric area. Finally,
model generality is validated by predicting walls in a novel floor
plan reconstructed on-the-fly in a real-world office environment.

Index Terms—Deep Learning Methods, Planning under Un-
certainty, Autonomous Agents, Learning from Experience, Map-
Predictive Exploration

I. INTRODUCTION

HUMAN and robotic problem-solving approaches differ
in dealing with the unknown and predicting the near

future. Classical robotic approaches seek exactness at the
cost of intuition and foresight, and on the contrary, humans
do not meticulously maintain metric maps of their worlds.
Even schematics and blueprints, documents explicitly intended
to specify technical details, leave room for interpretation.
Abstraction seems necessary for our ability to move between
the specifics of reality and the generality of ideas and ideals.
Replicating this ability to reason abstractly with explicit algo-
rithms has historically proven difficult, but recent advances in
learning-based approaches have opened up new avenues and
great strides have been made across many subfields of robotics.

In this work, floor plans are used as the medium through
which abstract reasoning is made possible. Floor plans are the
architectural blueprints of our built environment, a distillate of
the real world as a tidy set of shapes and symbols encoding
the layouts and purposes of rooms, positions of walls, door-
ways, and windows. Floor plans obey rules, symmetries, and
regularities that are impossible to state explicitly, often driven
by aesthetic considerations rather than logic. We have previ-
ously shown that recent advances in autoregressive language
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models can be leveraged to produce a generative model over
floor plans as sequences of vector graphic instructions [1].
By contrast to single-shot approaches such as [2], [3], an
autoregressive approach casts the floor plan generation task
as a series of decisions and their consequences, enabling the
model to reason in steps, analogous to the chain-of-thought
paradigm in large language models [4].

Autonomous exploration planning is an obvious example
of a classical robotics problem where such a prediction
model should be immediately applicable; however, we have
previously shown that traditional non-predictive exploration
planners are not well-suited to using predictions, and pre-
dictions can actually have a negative impact on exploration
performance [5]. In this article, we have limited the scope to
evaluating predictions by the primary variable that they affect
in the exploration context: predicted information gain.

This paper is structured as follows. In Section IV, an model
for predicting floor plans from sensor history, dubbed Floorist,
is defined. Data modality is the main difference from our
previous model [1], which dealt solely with abstract floor
plans. Floorist is instead grounded in the real world by taking
a partially observed environment as input in the form of 2D
occupancy grids from a 360◦ LIDAR sensor and predicting
the unobserved walls of that environment as line segments. In
Section V, a dataset generation method is outlined wherein a
virtual robot navigates between randomly sampled waypoints
in a collection of annotated floor plans, generating input
occupancy grids and their target wall segments. In Section VI,
cluster-based predicted information gain is defined as in [6],
[7], it is the evaluation metric used in this work, suitable
for occupancy grid-based prediction models. In Sections VII
and VIII, three prediction models are evaluated: Floorist, a
baseline convolution-based architecture as in [2], [3], [7]–[9],
and a non-predictive approach as in [10]. Floorist performance
under ablation of key components is also reported, as well as
its sensitivity to sensor range and occupancy grid area. Finally,
in Section VIII-D, Floorist is applied to an on-the-fly floor plan
reconstruction of a real-world office environment to validate
its generality.

The dataset generation software along with training and
inference code for Floorist is published in tandem with this
work under an open-source license at lericson.se/floorist.

II. RELATED WORK

The approach of predicting the unknown from occupancy
grids is perhaps most common in the autonomous exploration
literature. Autonomous exploration is the task of reconstruct-
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Fig. 1. Three consecutive occupancy grids with Unknown, Free,
Occupied, and Window cells; Predicted walls from a Floorist model;
Target walls; and Trajectory. Initially (left), few lines match up exactly,

apart from the northern exterior wall which is visible, and the predicted rooms
do exist though not in the exact locations predicted. In the next step (middle),
more information about the corridor is observed, and the predicted segments
are also improved, though the adjoining rooms are still misaligned and their
doorways misplaced. Finally (right), the adjacent rooms are partially observed,
and the predicted doorway alignment is now correct, and both room’s widths
are correctly adjusted. The images have been cropped for legibility.

ing a map of an environment, typically with no prior in-
formation about that particular environment, e.g., [6], [11],
[12], though not always [13]. In frontier-based exploration
planners, the planner considers frontiers by spatial clustering
of the boundary between free and unknown space. A score
is assigned to each frontier, and the planner navigates to the
highest-scoring frontier. The score is typically a function of the
travel distance and the predicted information gain, an estimate
of how many bits of new information will be obtained by
visiting that frontier. A popular predictive approach, e.g., [2],
[3], [7]–[9], is to derive training data directly from autonomous
exploration planning and then train some neural network to
predict a 2D occupancy grid, computing the predicted infor-
mation gain from the occupancy grid prediction. In sampling-
based exploration planners such as [10], [14], [15], path and
exploration planning are performed simultaneously with some
variant of RRT [16]. Some sampling-based works predict
information gain directly by a regression formulation, with
a deep network [15] or a Gaussian process [14]. In [8], a
reinforcement learning-based approach is proposed paired with
a convolutional network for occupancy grid prediction; [9]
extends the approach to a real-world exploration system in
the form of a micro-aerial vehicle.

Another line of inquiry is the explicit reconstruction of floor
plans from sensor data for architectural purposes, typically in
an offline setting. In [17]–[19] use an attention-based network
to approach the task of predicting a cohesive floor plan given
a set of point clouds covering the entire environment. [20]
solve a similar task, though using sparse multi-views instead
of point clouds. Their approach is to model the environment
topologically before generating a floor plan suitable to those
topological constraints. In [21], the aim is somewhere between
offline and online prediction, posing the problem of inferring
what is behind closed doors given an occupancy grid of the
observable parts of the environment, i.e., after exploration is
completed. The authors demonstrate favorable performance in
path planning tasks into unknown space, behind closed doors.

Some works concerning autonomous driving take a similar
approach to ours in representing and predicting the environ-
ment as a set of line segments with a neural network [22],
[23]. Emphasis is placed on reconstruction of the visible

environment as opposed to reasoning about the unknown,
though many of the technical challenges are similar. In the
category of learning-based approaches on vector graphics, the
approach is typically to embed an entire graphic to enable
downstream tasks on that embedding, such as animation and
interpolation [24], [25].

In [26], a topological approach to modeling and reasoning
about indoor environnments is taken. It also introduces the
KTH floor plan dataset, which is used for synthesizing training
data in the present work. It is a collection of floor plans from
a university campus, annotated with positions of walls, doors,
and windows.

III. NOTATION

⟨·⟩ denotes expectation under some probability distribution.
[·] denotes the Iverson bracket, sometimes called the indicator
function. It maps the truth value of a proposition to one or
zero. ⟨[x = 1]⟩ thus denotes the probability that x = 1. ⌊x⌋
denotes the floor function, i.e., the greatest integer less than
or equal to x.

IV. PROBABILISTIC MODEL

The problem of predicting floor plans is formulated as an
autoregressive prediction task on sequences of line segment
vertices. The perspective is an in-situ robot located at the
origin having observed some part of its surroundings, and the
task is to predict the walls of the floor plan beyond what has
already been observed, as illustrated in Fig. 1. The floor plan
is represented as a matrix S ∈ RN×4 of the N target line
segments from (x, y) to (x′, y′), i.e.,

S =


x1 y1 x′

1 y′1
x2 y2 x′

2 y′2
...

...
...

...
xN yN x′

N y′N

 (1)

The vector graphic produced by S is invariant to row-wise
permutations, and vertex order reversal. However, in an au-
toregressive regime, order does matter and must be chosen
carefully for two reasons. First, any function that models an
ordered sequence must by necessity subsume the ordering
algorithm. Secondly, autoregression implies that later positions
in the sequence are informed by earlier positions. We use a
proximity heuristic where the rows are ordered by the distance
from the robot to the nearest point on each line segment, as
in [1]. The intuition is that segments near the robot are often
partially observed, and can be predicted using the occupancy
grid as grounding. Later segments that are far away and
ungrounded can then be chosen to fit with the nearby grounded
segments. For vertex order, a simple strategy suffices. The
vertices of each segment are ordered lexicographically, i.e.,

(x < x′) ∨ ((x = x′) ∧ (y ≤ y′)) (2)

A. Sequence Tokenization and Factorization
The line segment prediction problem is cast as a sequence

prediction problem on the token sequence t where the joint
distribution is conditioned on some contextual input C, that is

p(S | C) = p(t | C) (3)



The sequence t is initialized and terminated by a ‘start’ and
‘end’ token respectively, and otherwise consists of vertex pairs,
each vertex is quantized by q : R×R → V with the index set
V = {1, 2, . . . ,HW} and

q(x, y) = ⌊W ( 12H − syy) + ( 12W + sxx)⌋ (4)

for some H×W grid at scale sx, sy in cells/m. The function
from segments S to tokens t(S) ∈ T 2N+2 with the token
vocabulary T = {‘start’, ‘end’} ∪ V is then defined

t(S) = (‘start’, q(x1, y1), q(x
′
1, y

′
1),

q(x2, y2), q(x
′
2, y

′
2), . . .

q(xN, yN), q(x
′
N, y

′
N), ‘end’)

(5)

The joint probability is factorized autoregressively as in the
recursion

p(t[j≤i] | C) = p(ti | t[j<i], C) p(t[j<i] | C)

p(t[j≤1] | C) = [t1 = ‘start’]
(6)

where ti denotes the ith token, t[j<i] and t[j≤i] denote the
subsequence of t up to but excluding (or including) i. The
next-token distribution is parameterized by logits from a deep
network fθ, i.e.,

p(ti | t[j<i], C) = σ(fθ(t[j<i], C))i (7)

where σ(·)i is the ith element of the normalized logistic
function. The function fθ assigns probability mass to the true
token sequence t̂ by gradient descent on ⟨L⟩, the expected
negative log likelihood under the data distribution, with

Lθ(t̂, C) = −
∑
t̂i∈t̂

log σ(fθ(t̂[j<i], C))t̂i (8)

B. Contextual Inputs

The contextual input C consists of two parts: a partial
occupancy grid M ∈ CH×W , and the visible line segments
S(M) ∈ RN×4 recovered from the occupancy grid. The cell
labels are

C = {‘unknown’, ‘free’, ‘occupied’, ‘window’} (9)

The label ‘window’ indicates that a cell contains an exterior
window, i.e., a window facing outside the building, and hints
the floor plan’s perimeter. Marching squares [27] is used to
find the visible line segments S(M). In regions where at least
one cell is marked ‘unknown’, no line segment is produced.

C. Network Architecture

Following success in the language modeling domain, the
choice of fθ in Eq. (7) is a transformer encoder-decoder with
multi-head attention (MHA) as in [29], illustrated in Fig. 2.
The encoder is computed once per sequence to encode the
contextual input, while the decoder is iteratively re-evaluated
step-by-step during sampling as the generated sequence is
constructed. Unlike [29], each transformer layer is a residual
layer with a gated residual as in [28]. The two modalities of
the contextual input are tokenized separately. The occupancy
grid M is encoded using a ViT network [30], and the
tokenized visible line segments t(S(M)) are encoded with
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Fig. 2. The Floorist network architecture with training and generation
pathways. In training, source and target token sequences are samples from
the dataset, where Encoder blocks and Decoder blocks are evaluated in
one pass. In generation, the source sequence starts as ‘start’ and the encoder
side is only evaluated once. The decoder is then evaluated to obtain the next-
token distribution, and a token is sampled from it and appended to the source
sequence before the process repeats again. R = |t(S(M))| is the number
of tokens in the line segments visible in M , T = |t̂| is the number of
target tokens. P is the number of patches from ViT, E is the embedding
dimension, Q,K, V are the query, key, and value matrices for a multi-head
attention (MHA) layer. t[i<T ] denotes removal of the last token (i.e., ‘end’),
and t[1<i] denotes removal of the first token (i.e., ‘start’). This shifts the two
sequences so that the target is always the next token. Note that each attention
block is a gated residual connection as in [28].

a discrete embedding with absolute position encoding. The
context tokens are concatenated along the sequence dimension
and cross-attended to.

1) Chromatization: Cell labels are mapped to 3-channel
pseudo-colors by k : C → R3 with

k(‘unknown’) = [−1;−1;−1] k(‘free’) = [−1;+1;−1]

k(‘occupied’) = [−1;−1;+1] k(‘window’) = [+1;−1;+1]

The exact choice of pseudo-colors is inconsequential as long
as they are unique.

2) Image Encoding: The chromatized image is fed through
a ViT network that produces a set of image tokens by consid-
ering the image as a set of non-overlapping patches which are
linearly projected to the embedding dimension E, and then
fed through a stack of self-attention layers. The ViT network
is not pretrained.

3) Sequence Embedding: Each token value ti ∈ T is
mapped to a learnable embedding vector, along with a learned
absolute position embedding for each i. The two embeddings
are summed to form the final token embedding.

D. Image-Based Formulation

Our baseline is an image-based formulation as in [2], [3],
where a chromatized occupancy grid k(M) is the input and
the target is a rasterized image of the target line segments. The
outputs are per-cell occupancy logits Yij . At inference time,
the occupancy state Oij is the maximum likelihood estimate

Oij = [Yij(k(M)) < 0] (10)

Marching squares is used to recover the predicted line seg-
ments. The loss function is per-pixel binary cross-entropy.



V. DATA SYNTHESIS

Similar to our previous work, we derive training and test
data from the KTH floor plan dataset [26]. Each floor plan is
represented as a set of rooms, each room being a polygon of
line segments categorized as walls, doors or windows. For
our purposes, only two boolean properties of the segment
categories are considered: transparent and passable. Doors are
assumed to be open and so are both transparent and passable;
windows are transparent but impassable; and, walls are non-
transparent and impassable. The segments are collected into
two sets, one with impassable segments used to generate paths
in the floor plan, and one with non-transparent segments used
for simulating sensor occlusions. Note that windows are not
only exterior windows, but also glass walls which are common
in office environments such as the KTH floor plan dataset.

Waypoints are first sampled by farthest point sampling [31]
inside each floor plan. Paths are then generated by Dijkstra’s
algorithm [32] between every pair of waypoints with a cost
based on the truncated distance to the nearest wall, so that
some minimum wall clearance is maintained where possible.
A virtual sensor is then simulated along each path at a
predefined step length, yielding a partial occupancy grid at
each step of the path built from the scans up to that step
by ray marching. Incident cells are first marked ‘free’, and
the terminal cells are then marked ‘occupied’ or ‘window’ if
the ray is a hit, i.e., terminated before the sensor’s maximum
range. Each occupancy grid is accompanied by its target line
segments from the floor plan. The target segments are filtered
by removing subsegments that lie inside ‘occupied’ cells.

A. Axis Alignment

The occupancy grid axes are automatically rotated to co-
incide with the visible line segments, which adds invariance
in the world-to-robot rotation up to an integer multiple of
90◦. Alignment also improves fidelity, as straight lines in the
environment are rotated to coincide with either the row or col-
umn axis of the occupancy grid which minimizes discretization
error, which is important for recovering the visible line seg-
ments. Following [33], a histogram is computed over the angle
of the line passing through each pair of neighboring LIDAR
points, modulo 90◦. The robot-to-surroundings rotation α is
then computed by an average of the histogram’s mode and the
two adjacent bins, weighted by frequency. Finally, the LIDAR
scans and target line segments are rotated by −α to align
them to the occupancy grid axes before the occupancy grid is
rendered.

B. Subdividing Segments

Subdividing segments serves to simplify the prediction
problem by allowing long segments to be predicted piece
by piece. The subdivision algorithm must be reproduced by
the model function fθ, so it should be simple and pre-
dictable. Furthermore, increasing the sequence by padding
tokens improves model performance [34], [35], suggesting
that shorter segments should improve performance, ceteris
paribus. In practice, it becomes a compromise between model
performance versus inference speed and memory usage.

Our solution is to subdivide the segments by superimpos-
ing a 21×21 regular grid and cutting the segments where
they intersect this grid. The effect is that from the model’s
perspective, the segments are always subdivided at the same
predefined coordinates.

VI. PREDICTED INFORMATION GAIN

Evaluating generative models is notoriously difficult as
there is typically no way to quantify the quality of novel
generations, and the measure of quality is often subjective.
A common approach to this issue is to evaluate the generation
quality by measuring feature statistics from a different neural
network [36], [37]. As argued by [38], generative models are
best evaluated by an intended application, which in our case
is to predict information gain in frontier-based autonomous
exploration. To define information gain, a probabilistic in-
terpretation must be made of the occupancy grid M . For
this definition, independence between cells is assumed, and
a categorical probability distribution is defined for the label of
each cell by

p(Mij = k) =

{
|C|−1 if Mij = ‘unknown’
[Mij = k] otherwise

(11)

If a cell is unknown, its label distribution is uniform, oth-
erwise, the distribution is an indicator function of the label,
with Mij ∈ C as defined in Eq. (9). Let M ′ denote the
occupancy grid M after sensor data integration at some
frontier. Information gained in M ′ given M is then defined
as

I(M ′ | M) =
∑
ij,k

p(M ′
ij = k) log

p(M ′
ij = k)

p(Mij = k)
(12)

Notice that terms where Mij = M ′
ij , or M ′

ij = ‘unknown’,
become zero. Assuming known cells in M remain the same
label, then the only non-zero terms will be those where Mij is
unknown and M ′

ij is known. In other words, Equation (12) is
proportional to the number of unknown-turned-known cells,
which is the definition of information gain used in this and
other works, e.g., [7].

Each occupancy grid cell is classified as either a frontier or
non-frontier based on its 4-connected neighbors. Specifically, a
cell is deemed a frontier cell if it is free, and amongst its four
neighboring cells there exists both free and unknown cells.
Following this classification, the DBSCAN algorithm [39] is
used to group these frontier cells into frontier clusters. The
frontier location is the location of the cell closest to the average
cell location.

VII. EXPERIMENTAL SETUP

Since the KTH floor plan dataset represents rooms as closed
polygons, there are no connecting line segments where rooms
connect, e.g., doorways, making it possible to traverse and
see inside the walls at these doorways. A heuristic is used
to insert wall segments in such situations: find a bijection
from each door segment uv to its nearest door segment
u′v′ and insert two wall segments uu′ and vv′ so that a
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Fig. 3. Illustration of how information gain is computed for a Frontier location found along Trajectory. The initial occupancy grid M is shown in (a),
while (b) to (e) show the occupancy grid M ′ after a simulated sensor scan in the predicted environment has been integrated into M , with Information
gain cells, Sensor scan, and Walls. Occupancy grid colors as in Fig. 1. In (b), walls are extracted from (a), corresponding to the typical way information
gain is estimated for a frontier in non-predictive autonomous exploration [10]. In (c), walls are predicted by a model using (a) as input to a U-Net predictor
as in [2], [3], and in (d) with the method proposed in this paper. In (e), the ground truth walls are used. In this example, the naive Ĩn, convolutional Ĩd, and
our approach Ĩf differ from the ground truth Î by 1593, 770, and 95 cells (relative difference 122%, 58.9%, and 7.26%) respectively.

quadrilateral is formed, if ∥uu′∥ + ∥vv′∥ < 2m. After this,
each set of segments is canonicalized by first merging nearly
identical vertices (within 1mm), then joining overlapping line
segments, and finally removing vertices that are not corners;
i.e., vertices v with exactly two neighbors u,w that form a
straight line uw through v.

The generated paths are filtered by length and number of
turns, only keeping paths between 5m to 100m long and
having at least 3 turns. The virtual sensor returns 720 points
per scan, and a scan is obtained every 80 cm along the path.
A cell is ‘window’ if a hit inside it is within 10mm from
the nearest exterior window segment. A window segment
is classified as exterior if both its vertices are within some
threshold distance (100mm) from the building perimeter.

Frontier clusters with less than 3 cells are excluded from
evaluation, as are those whose center lies within 5 cells of the
edge of the occupancy grid. Cluster larger than 30 cells are
divided into subclusters by k-means [40].

There are on average 75 context line segments and 165
target line segments per sample in 6 392 919 samples from
164 floor plans. Each occupancy grid represents a 15×15m2

area in 121×121cells. The vertex quantization function Eq. (4)
is identical in scale and size to the occupancy grid, i.e., H

sy
=

W
sx

= 15m and H = W = 121. The maximum sensor range
is r = 4.5m unless otherwise stated.

A. KTH Dataset Considerations
It is important to note that the KTH floor plan dataset

contains duplicated floor plans, and that there are strong
similarities between floors of a single building. It would
therefore be an error to simply shuffle the entire dataset, as this
would contaminate the training set with test data. As in [1], we
deduplicate the KTH floor plan dataset and split it into training
and test before shuffling, and adjust the splitting point such that
a single building’s floor plans are all exclusively training or
test data, preventing any cross contamination.

B. Model Hyperparameters
In all experiments, the embedding dimension E = 512.

AdamW [41] is used with weight decay 10−2, learning rate

10−4, and batch size 6. A 10% dropout is also applied.
Since the dataset is large compared to the model size, the
network can be trained indefinitely without overfitting; training
was stopped when the validation loss stopped decreasing.
The occupancy grids, visible line segments, and target line
segments are jittered by one of the eight symmetries of the
square, i.e., a random combination of mirroring and rotating.
Performance was not improved by relaxed regularization.

Top-p sampling [42] is used for all generation, with p =
80%. Other choices of p were evaluated but yielded worse re-
sults. No temperature scaling or repetition penalty is applied.

VIII. EXPERIMENTAL RESULTS

In Fig. 4, examples of the generated wall segments are
shown for six continuous steps of randomly sampled trajecto-
ries in the test set. Frontier locations used when evaluating
predicted information gain are also shown. Results from a
model with larger area but same network size is also shown,
showing less coherent output, as the prediction task is harder;
e.g., there are segments passing through free space, a mistake
that the smaller model does not tend to make. Finally, results
from the image-based predictor are also presented, illustrating
the difficulty in a pixel-wise approach to occupancy regres-
sion.

A. Predicted Information Gain
Predicted information gain is evaluated using the following

different sets of wall segments, illustrated in Fig. 3:
1) Naive: Assume that only what has been observed to be

occupied is occupied, i.e., no segments are predicted and only
the walls visible in the occupancy grid occlude the sensor.
This is a common approach in non-predictive exploration
planning [10], and is equivalent to assuming that unknown
space can be considered sensor transparent.

2) U-Net: U-Net [43] is a fully-convolutional image seg-
mentation network, chosen as a baseline as it has been used in
previous work on occupancy grid prediction for autonomous
exploration [2], [3]. The network was not pretrained. Several
network architectures were evaluated for image-based predic-
tion [8], [30], [43]–[46]. All architectures reached convergence



at the same loss value, suggesting that convergence is caused
by the intrinsic difficulty of image-based prediction.

3) Floorist: A 121×121 vertex grid with L = 6 attention
layers, 8-way MHA, 4096 GeLU units, and E = 512 embed-
ding dimensions. The image encoder is a three-layer ViT [30]
with patch size 6 (i.e., P = 400), 8-way MHA, and 4096
hidden units.

4) Ground Truth: Using the actual walls of building, i.e.,
true information gain.

In Fig. 5, the cumulative distribution function of absolute
errors in predicted information gain is presented for the
three evaluation targets on test data. Image-based prediction
provides substantial improvements over naive non-predictive
estimation, and our sequence-based approach in turn provides
substantial improvements over image-based prediction. 95%
confidence intervals for the median absolute error (MAE) are
1195 ± 2, 452 ± 1, and 236 ± 1 cells. The intervals are
computed by bootstrapping with 1000 trials. A two-sample
Kolmogorov-Smirnoff test (KS) indicates whether a pair of
CDFs differ significantly by measuring the largest vertical gap.
Image-based predictions are significantly more accurate than
naive estimation (∆MAE 745 cells, KS 34.5%), and Floorist
predictions are in turn significantly more accurate than image-
based prediction (∆MAE 217 cells, KS 16.2%).

B. Scale and Sensor Range

To assess the impact of scale, the information gain evalua-
tion is performed on a model with twice the area, 30×30m2.
The occupancy grid size is limited by GPU memory, and
remains 121×121 cells. The resolution is therefore four times
lower (16.27 cells/m2 vs 65.07 cells/m2). The larger area re-
sulted in 75% longer token sequences, requiring significantly
more GPU memory; batch size was therefore reduced to 2.
Information gain is evaluated as in Section VI, with two
sensor range settings: r = 4.5m and r = 9m. To ensure the
results are comparable, information gain is computed at the
base resolution. The MAE of each model at each setting is
reported in Table I, with the frequency of overestimating and
underestimating of the information gain. The first three rows
are the results reported in Section VIII-A. The performance of
the larger-scale model is slightly worse than the base model
in the shorter range setting (∆MAE 40 cells). The large-scale
model is significantly better than the base model in the 9-
meter case (∆MAE 679 cells), because the longer sensor range
often reaches outside the 15×15m2 prediction area of the
base model, giving an overestimating effect similar to naive
estimation. This is reflected in the sharp increase in frequency
of overestimation.

C. Model Ablations

We ablate some key components of our model and evaluate
the impact on its performance on the test set in terms of the
loss and the accuracy of the maximum likelihood estimate.
The following ablations are reported in Table II: ‘window’
labels replaced by ‘occupied’ in training and test occupancy
grids; embedding weights of visible segments is shared with

TABLE I
EVALUATION OF SCALE AND SENSOR RANGE

Range (m) Area Median (cells) Under (%) Over (%)
r (m2) |Ĩ − Î| ⟨[Ĩ < Î]⟩ ⟨[Ĩ > Î]⟩

4.5 Naive 1195 0.00 98.0
U-Net 452 11.3 85.9
15×15 236 28.5 66.5
30×30 276 34.0 58.7

9.0 15×15 1475 19.0 80.1
30×30 796 31.5 66.0

TABLE II
EVALUATION OF MODEL ABLATIONS ON TEST SET

Ablation Loss (bits) Accuracy (%)
⟨L⟩ ⟨[t̂ = t∗]⟩

Floorist 15×15m2 1.13 81.7
No Window Labels 1.17 (+0.043) 81.3 (-0.38)
Shared Vertex Embedding 1.20 (+0.065) 80.8 (-0.87)
No Context Segments 1.23 (+0.103) 80.1 (-1.55)
No Image Encoder 1.40 (+0.267) 78.1 (-3.54)

Values in parentheses are relative to the first row. L is defined as
in Eq. (8), and t∗ is the maximum likelihood estimate.

embedding weights of the target segments; without visible seg-
ments as cross-attended tokens, i.e., only using the occupancy
grid as context; and, without the image encoder, i.e., only
using visible segments as context. We see that each ablation
degrades performance, and that the occupancy grid context
is most important. This may be because the occupancy grid
is the only volumetric representation of the environment, and
indicates where free versus unknown space is.

Window labels have the smallest impact on the reported
metrics since windows are relatively uncommon in the dataset.
Window labels were included as a cue for the building exterior,
so the effect of those labels should be evaluated by evaluating
if they prevent the model from predicting walls outside the
building exterior. We specifically look at instances where at
least one occupancy grid cell has the ‘window’ label, and
compute the length of predicted line segments that fall outside
the building perimeter as a proportion of the total predicted
segment length. Window labels reduced the length of segments
outside the building perimeter by 22.4%, from 10.93% to
8.48%, indicating that the model does respond to the window
cues.

D. Reconstructed Floor Plans

The software library RoomPlan [47] enables online recon-
struction of floor plans from real-world sensor data in cluttered
environments. As a test of the generality of our approach, we
show that our method can use such reconstructions. Room-
Plan runs on a modern smartphone using an image sensor
and a solid-state LIDAR sensor, and produces a parametric
3D model of the environment as a set of objects of some
predefined types: walls, doors, windows, and miscellaneous
furniture. From this model, 2D line segments are derived
by the orthogonal projection of the walls and windows onto
the ground plane. A LIDAR sensor is simulated along the



(a) Floorist 15×15m2 (b) U-Net [2], [3]

(c) Floorist 30×30m2

Fig. 4. Examples of predictions on random samples from the test set. Each row is a section of a single trajectory, in sequence from left to right. Frontier
locations used in the information gain evaluation are also shown. Other conventions as in Fig. 3. Note that in (b), the predicted occupancy grid is shown with

Occupied cells. It is advisable to use a digital document viewer to zoom the vector graphics.
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Fig. 5. Cumulative distribution function F of absolute error |d| = |Ĩ − Î|
in predicted information gain Ĩ from the true information gain Î using line
segments from Naive, U-Net, and Floorist. N = 1464 140.

trajectory, and the floor plan is predicted from the resulting oc-
cupancy grid. The reconstructed 2D floor plan, the trajectory,
and a wall prediction is shown Fig. 6. The model correctly
infers that there is a corridor outside, and that there is an
adjoining room; however, it predicts the room to be in the
middle of the corridor, not the end, as is the actual case.

IX. CONCLUSION

In this work, we have presented an attention-based genera-
tive model for floor plans conditioned on realistic sensor data.
We have shown that our model can cope with the high dimen-
sionality of a time-dependent occupancy grid representation
with a realistic sensor model and make competent predictions
as quantified by evaluating the predicted information gain.
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Fig. 6. Illustration of (a) a reconstructed floor plan from [47], with walls,
a window, and furniture; (b) simulated Trajectory inside the floor plan
derived from (a) with sensor scans; and (c) the axis-aligned occupancy grid,
and an example of Predicted walls from Floorist.

The approach offers advantages over traditional image-based
predictions at the cost of longer inference time, though autore-
gressive sampling performance is an active area of research.
We have also shown that the approach is robust enough to
be used in real-world environments, demonstrated by using
an off-the-shelf floor plan mapping solution as the source of
floor plan data. In the future, we aim to extend our real-
world demonstration to create a real-time floor plan prediction
system from sensor data. Another interesting direction is ad-
versarial multi-agent contexts where intuiting the surrounding
is important, such as pursuit-evasion and other search games.
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