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Abstract— In map-predictive exploration planning, the aim
is to exploit a-priori map information to improve planning for
exploration in otherwise unknown environments. The use of
map predictions in exploration planning leads to exacerbated
greediness, as map predictions allow the planner to defer
exploring parts of the environment that have low value, e.g.,
unfinished corners. This behavior is undesirable, as it leaves
holes in the explored space by design. To this end, we propose
a scoring function based on inverse covisibility that rewards
visiting these low-value parts, resulting in a more cohesive
exploration process, and preventing excessive greediness in a
map-predictive setting. We examine the behavior of a non-
greedy map-predictive planner in a bare-bones simulator, and
answer two principal questions: a) how far beyond explored
space should a map predictor predict to aid exploration, i.e.,
is more better; and b) does shortest-path search as the basis
for planning, a popular choice, cause greediness. Finally, we
show that by thresholding covisibility, the user can trade-off
greediness for improved early exploration performance.

I. INTRODUCTION

Exploration is an essential capability in any truly au-
tonomous robot dealing with an unknown or changing en-
vironment. It is particularly useful in radio-denied scenarios
where time is of the essence, such as search-and-rescue in
disaster zones [1]. The typical metric used is coverage over
time or distance traveled [2], [3], though some recent work
focuses on reconstruction error [4].

Although exploration implies an unknown environment, it
is exceedingly rare that no prior information is available. For
example, in man-made indoor environments, there is plenty
of structure and common knowledge that a system should
be able to exploit [5]. In spite of this, few state-of-the-art
autonomous exploration methods make use of this.

Suppose a robot is tasked with exploring an indoor envi-
ronment and is placed in a small room near a doorway to
a long corridor. If the robot decides to explore the corridor
first, it will have to return back to the room once it has
reached the end of the corridor, thus resulting in unnecessary
travel. Ideally, the robot would estimate what the rooms look
like before they have been explored, and decide its course
of action based on its estimation. This is the aim in map-
predictive exploration planning.

Map prediction can be understood in multiple ways, from
nearest-neighbor search in a patch-based database, to using a
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Fig. 1. An illustration of how traditional vs. non-greedy exploration planner
performs in a map-predictive scenario. A snapshot is taken every 150 m of
travel. Top: using a non-greedy planner, bottom: a variant using a traditional
information gain formulation. Color shows the value of a proposed non-
greedy scoring function that assigns high value in difficult-to-see regions.
Red is lowest, dark blue is highest, and gray is already explored space. For
the traditional planner, color illustrates what value the non-greedy scoring
function would have assigned if it had been used. The traditional planner
skips small regions early on which it must then revisit, allowing the non-
greedy planner to finish earlier, after 620 m, compared to 1 067m.

deep learning-based generative model to allow some degree
of spatial intuition. In this paper, “predictive” is not restricted
to the statistical sense of the word, but more generally “ahead
of time”. Predictions could be made from a longer-range
sensor, e.g., using a LiDAR to plan the path of an RGB-
D camera. If a partial or outdated map is available, as in
multi-agent exploration or search-and-rescue in a collapsed
building, prediction could mean using that knowledge.

Recent work on map-predictive exploration [6], [7] use
map predictions to improve estimation of a utility function,
and demonstrate improved performance. However, we find
that because the estimation is more accurate, it has caused
the exploration to become more greedy, maximizing short-
term utility. In [8], up to 71 % of the total time is spent on
covering the last 10 % of space. We find this phenomenon
in most state-of-the-art exploration methods.

In light of these findings, we propose that non-greedy
exploration is key to truly unlocking map-predictive ca-
pabilities for exploration. In this paper, a minimal model
of autonomous exploration planning is defined, in order to
study the causes of greediness in map-predictive settings. To
this end, we substitute prediction with an oracle, giving the
exploration planner knowledge of the environment a-priori.
The contributions are:

1) We propose a scoring strategy that removes greediness
by weighting the utility function by inverse covisibility,
demonstrated in Fig. 1.



2) We investigate the use of an exhaustive local search as
the basis for exploration planning, as RRT-based plan-
ning may cause greediness in map-predictive settings.

3) We investigate the impact of a prediction horizon
on greediness, which is the distance beyond explored
space that is known in advance.

The software used to produce the results of this paper is
available at https://git.lericson.se/fragmenot.git.

II. BACKGROUND & PRELIMINARIES

Generally, the goal of autonomous exploration is typically
to explore some real-world environment in the shortest time
possible. In its simplest form, it is a cycle of the following:

1) plan where to go by some heuristic,
2) execute the selected plan, and
3) integrate sensor readings into a map.

The cycle continues until the map is sufficiently complete,
or a predefined time limit is reached.

In frontier-based exploration such as [6], [7], [9]–[11],
the planner selects which frontier to visit according to some
utility function. A frontier is defined as a boundary between
free and unexplored space. Another common formulation is
sampling-based exploration such as [2], [4]. A planning tree
T rooted at the current state is constructed in an RRT-like
fashion [12], [13]. Specifically, T is iteratively constructed
by sampling a point p, moving it to some maximum distance
from the nearest node p∗ in T , and adding the edge p∗ → p
to T . Once the planning tree is built, the best path is chosen
according to some score function over tree nodes.

The score functions can be said to consist of two parts:
gain g, and cost c. The gain is formulated as an integral over
an uncovered surface or volume V

g(V ) =

∫
V

ρ dV (1)

where dV is a surface or volume element of V as appropriate,
and ρ is a value density function. V is typically discretized,
turning the integral into a sum. The cost is normally based
on distance or trajectory execution time.

In [2], a sampling-based receding horizon approach is
presented where a single step is taken before replanning. The
planning tree can fail to reach unexplored space when the
environment is difficult to navigate, or the nearest unexplored
space is far away. AEP [3] solves this by a falling back to
a frontier-based strategy when the information gain for the
best sampled path is insufficient. Like [2], the AEP gain
is volumetric. The method is evaluated both in simulation
and on a drone with coverage as the metric. In [4] a
sampling-based method is presented where the gain function
is designed to minimize the reconstruction error. The authors
also propose to normalize the score function by computing
the sum gain per cost over each path in the planning tree
in global normalization. Works [2]–[4] primarily rely on
traditional information gain, i.e., ρ = 1.

In terms of map prediction, [5] presents a database of CAD
models and is used to make predictions for topological maps.
[14] present a map-predictive approach where the perspective

is one of motion planning in the presence of unknown
obstacles. Their contribution is improving maneuvering and
safety in unknown environments.

A map-predictive exploration method is presented in [7].
Generative image inpainting based on deep-learning is used
to predict a 2D grid map, providing better estimates of
the gain by inferring V in Eq. (1). They use a standard
frontier-based method and demonstrate using simulation that
map predictions allow the robot to perform efficient coarse
exploration.

In [6], a frontier-based method is presented that investi-
gates how different types of prior knowledge and predictions
can be used for exploration planning. Predictions of room
layouts are made from a partial 2D grid map using line
detection heuristics. The authors note that the better their
prediction is, the more it leaves fragments of unexplored
space behind. This result is consistent with [7], where the
greediness results in incomplete coverage.

In [15], map-predictive exploration is cast as offline ex-
ploration planning with simple simulation in 2D grid maps.
Exploration planning is accomplished by a frontier-based
A* planner, including the exploration state as part of the
search tree, which is not feasible beyond relatively small
2D grid maps. Notably, [15] explicitly prevent the planner
from visiting “small clusters” in the interest of efficiency,
which results in incomplete coverage even for the simple
maps presented.

We observe that in each of [2]–[4], [6], [7], [15], the
system quickly gets to 85–95 % coverage, then spends most
of its time on the last 5–15 %, if at all covered. This finding
is the key motivation to our study of greediness in map-
predictive exploration. We take a similar approach to [15],
using a simplified model of exploration as the basis of
investigation.

III. MODEL

Recent work in autonomous exploration typically relies
on high-fidelity simulators for evaluation. In this work, we
study the theoretical aspects of map-predictive exploration.
A simple simulator is therefore not only sufficient, but to
be preferred, as it allows us to eliminate extraneous error
sources, such as sensor noise, complex motion models, and
heavy simulation environments.

A. World Representation

We represent occupied space as a mesh of K triangular
faces, denoted SΩ = {f1, f2, . . . , fK}, and explored space
as a subset S ⊆ SΩ of those K faces. This lets us define
completion exactly as the percentage of area seen, and have
100 % explored if and only if S = SΩ. A face f ∈ S is seen,
and a face f 6∈ S is unseen.

This representation is efficient enough to also enable us
to do sensor integration in the planning step, and to thus
determine the exploration state (see Eq. (2)) along every path
inside the planning algorithm.

Motion is simplified by being confined to a precomputed
roadmap, represented as an undirected graph G = (V,E)
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with the states V ⊆ R3. The roadmap is distributed as a
connected lattice, so that each edge is of equal length, and
there is a path between every pair of states. The motion
model is deterministic. The visible faces S{u,v} ⊆ SΩ along
the edge {u, v} ∈ E are the set of unoccluded faces within
sensor range between u and v.

The exploration state is thus parameterized by the tuple
(S, v) with S ⊆ SΩ the set of seen faces, and v ∈ V the
current state. Its successor function is(

S, v
)
←
(
S ∪ S{v,v′}, v

′) (2)

where v′ ∈ V is the successor state.
In summary, our world representation differs from the

typical exploration literature in these regards:
1) The state space is essentially finite, defined by V , and

we can therefore plan by a graph search on G.
2) Occupied space is represented as a triangular mesh,

and explored space is a subset of occupied space, hence
eliminating reconstruction errors.

3) While many exploration methods “double count” un-
covered space when there is sensor overlap in the
planned path, we do not, since the same state successor
function is used in planning and execution.

These deviations allow us to isolate the planning part of
exploration planning and also to close the gap between the
plan and the execution in terms of using sensor information.

B. Path Planning with Map Predictions

RRT-based planners are not a well-motivated choice for
map-predictive exploration planning, since they compute the
shortest path which is not generally desirable in unexplored
space. To illustrate this point, suppose a perfect maze is
to be explored in a map-predictive setting, starting at the
maze entrance. A perfect maze is equivalent to a tree where
junction points are tree nodes, and the tree leaves are dead
ends. The optimal exploration path is then equivalent to
a depth-first search of the tree. An RRT-based planner,
however, would tend to select “the longest shortest path”,
i.e., the path to the furthest-away leaf node in the maze tree,
since such a path explores the most space. This phenomenon
is visible in Fig. 1, where the traditional planner first explores
the bottom left corner, then the top right, then the top left,
and so on.

We therefore compare two path planners, which we call
backtracking search and shortest-path search. Shortest-path
search models RRT-based path planning and is equivalent to
a perfect RRT-based path planner, as it computes the actual
shortest path in G.

In backtracking search, an exhaustive local search on G
is performed by generating paths via breadth-first search. It
revisits the same state multiple times, allowing backtracking
paths such as v1 − v2 − v1 − · · · to form. Since the set
of possible paths grows exponentially with path length, the
search is limited to the first N paths so generated.

Temporary jump edges are inserted into the roadmap G
from the current state to each state in the frontier set F ⊆ V

at the start of path planning. A state is in F if and only if it
has at least one seen and one unseen face along its edges. A
jump edge is equivalent to traversing the shortest path over
already-explored edges, so all jump edges have S{u,v} ⊆ S
by definition, and consequently zero gain. Jump edges are
approximately equivalent to starting a sub-search from each
state in F . Jump edges also guarantee that the planner finds
unseen faces, since the distance to at least one unseen face
is two edges at most.

C. Prediction Horizon

Map prediction will realistically only be able to accurately
predict at some maximum distance ahead of explored space.
We call this distance the prediction horizon. Such a horizon
is sure to impact exploration performance, and we therefore
impose a horizon artificially by cropping the environment at
d meters from explored space.

Specifically, we remove states in the roadmap G that are
more than d meters plus the sensor range away from the
nearest visited state. This means that planning is restricted
to explored space plus d meters beyond.

D. Evaluating Greediness

Greediness can be quantified by the surface-to-volume ra-
tio of unexplored space. It is preferable to have the remaining
unexplored space concentrated in one dense area, as opposed
to having small disconnected clusters spread out over the
entire environment. The latter is a consequence of greedy
exploration, so a non-greedy planner should have a lower
surface-to-volume ratio of its unexplored space. We therefore
evaluate greediness by the isoperimetric ratio (IPR). For the
unexplored faces U = SΩ \ S,

IPR(U) = L2
UA
−1
U (3)

where LU , AU is the perimeter and area of U , respectively.
IPR is a convenient metric, as it is dimensionless, and
invariant to similarity transforms such as rotation or scaling.

IV. NON-GREEDY EXPLORATION

Map predictions lead to ballooning gain in the predicted-
but-unexplored space. The consequence is that the planner
prefers moving towards these high-gain regions, leaving
comparatively low-gain fragments and slivers of unexplored
space behind. Eventually, these low-gain fragments are all
that remain, and the robot must travel long distances to re-
visit areas it has already been in, to visit the remaining
fragments and complete the exploration.

Adding or increasing a distance-based cost is not suffi-
cient to prevent this phenomenon. Consider a robot that is
approaching a corner of an unexplored room. It can either
visit the entire corner, or just come near it and continue away
from the corner. The latter plan almost surely has higher gain,
regardless of how high the distance cost is set.

The solution is to “finish what you started” by weighting
those small regions higher. These regions are visible from
places where the sensor would see few other faces simul-
taneously. Consequently, sensor covisibility is low for such



faces. By inversely weighting each face by the covisibility,
greediness can be avoided.

A. Sensor Covisibility

We define sensor covisibility as a binary relation Cij ∈
{0, 1} between a pair of faces fi and fj . The pair is covisible
if at some edge in G, they are both visible to the sensor:

Cij = 1 ⇐⇒ ∃{u, v} ∈ E : {fi, fj} ⊆ S{u,v} (4)

with E and S{u,v} as before. Naturally, the relation is
symmetric, so Cij = Cji.
Cij forms a relation matrix C ∈ {0, 1}K×K which is used

to find the total unseen covisible area ci for each face with
the matrix-vector product[

c1 c2 . . . cK
]T

= C
[
a1 a2 . . . aK

]T
(5)

where ai is the area of the ith face, but zero for seen faces.
Since seen faces do not contribute, ci will decrease as its
covisible faces are explored. We weight inversely by ci,
which encourages further exploration in the neighborhood
of ith face, and thus drives the planner to finish exploring a
region before moving on.

B. Inverse Covisibility Scoring

The gain function g(·) is formulated as a surface integral
over uncovered space similar to [4], [16]. In our case, it is
a sum over the set of new faces seen when traversing from
u to v, i.e., ∆S = S{u,v} \ S, and

g(∆S) =
∑

f∈∆S

ρf with ρf = exp (−α√cf ). (6)

The parameter α determines the strength of preference for
low covisibility faces. Note that traversing an already visited
edge has a gain of zero, since ∆S = ∅ in that case.

Similar to [3], cost is modelled by exponential decay
c(D) = exp (−λD + b) where D is distance traveled from
the current state, and λ is the decay rate. The bias b is
introduced to improve numerical stability. The per-edge score
function is

q(∆S,D) = g(∆S)c(D) (7)

and the score of a path is a sum of q over the path’s edges.
The prediction horizon d affects covisibility scoring in that

we mark faces that are more than d meters away from the
nearest seen face as non-covisible with all other faces, i.e.,
cf = 0 for such faces.

Fig. 2. Illustration of the roadmap
lattice for two layers. The orange layer
is sitting on top of the green layer, with
blue edges connecting the two. The
distance between the layers is such that
all blue, orange, and green edges are of
equal length.

TABLE I
PARAMETER SETTINGS IN OUR EXPERIMENTS

Algorithm Model

α 1.2 Sensor Range [m] 3.0
λ 0.35 Edge Length [m] 1.5
b 7 Branching Factor ∼ 6
N 30 000

TABLE II
ENVIRONMENTS USED IN OUR EXPERIMENTS

Environment Office [3] Labyrinth [4]

Bounding Box 34× 25× 5 40× 40× 3 m3

Surface Area of SΩ 1 725 2 942 m2

Faces K 24 386 30 819
Face Area ∼ 0.07 ∼ 0.095 m2

|V | 573 1 449
|E| 1 540 4 822
Pairwise Path Length ∼ 7.6 ∼ 10.5 m

V. IMPLEMENTATION

The covisibility matrix C is computed by ray-casting
radially outwards at regular intervals of 25 cm along every
edge {u, v}. The sensor geometry is thus a sphere, limited to
a radius of 3 m. The sphere is approximated by an icosphere
of 2 562 vertices, with one ray cast at each vertex. Since G
is constant, ray casting is done once.

The roadmap is constructed by multiple layers of triangu-
lar tilings in the XY plane, shown in Fig. 2. Each layer is
offset from the one below so that its vertices end up at the
triangle centers of the layer below. Each vertex in the upper
layer is connected to the three vertices making up the triangle
below it. The layers are stacked Z-wise so that the inter-layer
edges are the same length as the sides of the triangles. This
means that all edges are equally long, in our case, 1.5 m. We
remove edges that intersect the environment mesh. Faces that
are not visible from anywhere in G are discarded from SΩ.

With a budget of N = 30 000 paths and a branching factor
around 6, we search all paths of length 3 and below, and
about half the paths of length 4. The selected path is most
often of length 4 since Eq. (7) is non-negative. We take a
single step of the best path, thus moving 1.5 m before the
planning cycle begins again. All pertinent parameters are
presented in Table I.

VI. EXPERIMENTS & EVALUATION

In this section, we first show that non-greedy planning
does improve long-term performance for map-predictive
exploration. Following that, we answer the two questions
posed at the beginning of this paper: what is the effect
of the prediction horizon, and does an RRT-based planner
exhibit more greediness given map predictions. We then
show that a hybrid approach can be taken where long-term
and short-term benefits are gained from map predictions. We
run our experiments in two indoor environments: first, the
maze environment from [4] seen in Fig. 1, and second, the
office environment from [3] depicted in Fig. 4. Environment
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Fig. 3. Unexplored surface area over distance with the same settings as in
Fig. 1, in the maze environment. Shaded area is ±2σ. “ICVS” is using the
inverse covisibility score described in Section IV with backtracking search,
and traditional uses shortest-path search with uniform information gain. In
both cases, the prediction horizon d = ∞. The non-greedy variant lags
behind until around the 5 % mark, and reaches completion shortly after.

statistics are summarized in Table II for comparison. An
important difference between the two environments is that
the office environment has outlier faces that can only be
seen from particular edges in the roadmap. The outlier faces
are artifacts from reconstructing the mesh from noisy sensor
data using [3]. The maze environment, on the other hand, has
no outlier faces as it is not a reconstruction. Unless otherwise
stated, each experiment is repeated 10 times.

A. Traditional Vs. Non-Greedy Planning

Our first experiment establishes whether or not a non-
greedy scoring function actually outperforms a traditional
formulation in the long run, as we have hypothesized.
The traditional formulation uses shortest-path search, with
uniform information gain, i.e., ρ = 1, and both are given
knowledge of the full map, d = ∞. Figure 3 shows the
aggregate statistics of that comparison.

In Figure 1, eight snapshots are presented from one such
run: four from the non-greedy planner, and four from the
traditional planner. The snapshots show that the traditional
planner leaves corners and other smaller regions unexplored
throughout the map. The covisibility score is encoded in
color, showing that these regions would have had high gain if
covisibility scoring had been used in the traditional setting.

Figure 3 shows unexplored space over distance traveled
for the same runs. As expected, the traditional formulation
is fast to cover ground early on, but as exploration nears
completion, the non-greedy planner outpaces it since it has
not left any fragments behind. Meanwhile, the traditional
planner must travel an additional 400 m to finish, 63 %
longer. This mirrors the findings in [2]–[4], [6], [7], and
therefore validates the model.

Fig. 4. The office environment from [3]
used in the experiments of Section VI-C.
Even though it is considerably smaller,
completion distances are comparable to
those of the maze environment for both
traditional and non-greedy exploration.
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Fig. 5. Distance at completion in meters for some choices of prediction
horizon d, comparing the two path planning variants in the office environ-
ment, both using inverse covisibility scoring. For reference, a traditional
information gain with shortest-path planning is also shown. The horizontal
axis is logarithmic. Vertical lines show ±2σ. Backtracking search improves
until d ≥ 8, while shortest-path search improves until d = ∞ but slower.
The traditional formulation is unaffacted by the prediction horizon.

B. Planning Style and Map Prediction

Figure 5 shows a comparison of the two planning styles
using inverse covisibility scoring along with a traditional
formulation using a uniform gain in the office environment
for a selection of prediction horizons. Backtracking search
performs better than shortest-path search, except when the
prediction horizon is either very near, or very far away.
Backtracking search reaches its optimum at d = 8, which
is approximately the planner’s reach beyond explored space,
and also approaching the environment size. Notably, the
optimum for shortest-path search is reached much later, at
d = ∞, where the two planners perform equally well.
Traditional exploration is unaffected by map prediction.

C. Effects of the Prediction Horizon

Figure 6 (top) shows completion over distance for a
selection of d values, when using inverse covisibility scoring
and backtracking search. Lower d values lead to more
rapid exploration at first, suggesting more greediness. These
are caught up by the high d conditions as more of the
environment is explored. The higher d conditions finish
abruptly, while the low d conditions do not because of the
considerably fragmented unexplored space they have left
behind as evidenced by the IPR.

The greediness thus decreases with the prediction horizon
d, and higher d conditions finish with a shorter total distance.
For d ≥ 8, the performance is the same as for d =∞. This
is the limit of the planner’s ability to take advantage of map
predictions due to limited search depth.

D. Leaving Some Things Behind

Figures 3 and 6 shows that improved late-stage perfor-
mance has come at the cost of early-stage performance,
which is the intended behavior. Non-greedy exploration
finishes exploring every corner and crevice before moving
on, therefore delaying exploring high gain regions. However,
since the office environment is a reconstruction from noisy
sensor data, it contains outlier faces that are only visible
from a single edge in the roadmap. The proposed scoring
function can be amended to ignore such outliers by setting
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Fig. 6. Completion and isoperimetric ratio at different prediction horizons
d meters. Solid lines represent median, shaded regions represent a 90 %
confidence interval. Low d values approach completion faster but are caught
up by higher d values towards the end. The IPR explains why: low d
values get ahead by being less thorough, while high d values have left
no unexplored space behind when they approach completion.

their score low. Specifically, we substitute the covisible area
with a thresholded variant in the gain function of Eq. (6),

ĝ = g[cf ← ĉf ] where ĉf =

{
cf + P cf < cT

cf otherwise
(8)

where P is a penalty incurred for faces of below-threshold
covisibility, and cT is the threshold itself. Since cf is an
exponent in Eq. (6), the penalty drastically lowers the gain
for such faces, allowing the planner to skip them until only
such below-threshold faces.

Figure 7 shows the completion and IPR of this formulation
in the office environment with a selection of thresholds cT ,
with d = ∞ and P = 200. Baseline is using traditional
information gain. With cT ∈ {0.05, 0.10, 0.25}, only outlier
faces are skipped. Consequently, results are similar to d =∞
of Fig. 6, but early-stage performance has improved: at 400
meters of travel, about 12 % more space is explored.

With cT = 6.00, we reintroduce some greediness by
allowing to skip larger regions. This condition gets to 10 %
unexplored at the same time as the baseline, but manages to
finish earlier, showing it has improved late-stage performance
without sacrificing early-stage performance. The IPR curve
also shows the planner is not simply reverting to traditional
exploration, as IPR rises later, and decreases faster than
the baseline. This is because even though some unexplored
regions are left behind, once only such regions remain, they
are explored in a non-greedy manner as before.

VII. CONCLUSION

In traditional exploration planning, space is either ex-
plored and known, or unexplored and unknown. With map
predictions, a third state arises: unexplored but predicted
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Fig. 7. Using gain Eq. (8) we achieve a trade-off between speed and
thoroughness. Smaller values of cT means that smaller areas are left behind.
Higher values allow skipping the most difficult-to-see faces, which are
among the most costly to get to. An inflection point occurs when only
faces with cf < cT remain. IPR increases before that point, as unexplored
space starts to become fragmented.

space. This third state of space calls into question the use
of shortest-path search as the basis for exploration planning.
We have demonstrated that a more flexible path planning
can indeed improve performance, but these benefits are
modest compared to the use of inverse covisibility scoring.
This suggests that similar heuristics should be sufficient to
enable map-predictive capabilities in RRT-based exploration
planners. We have also shown that using such a heuristic,
greediness decreases as the prediction horizon increases,
indicating that even a relatively weak map predictor may be
useful. Finally, we have shown that it is possible to combine
early and late stage performance with a thresholded inverse
covisibility scoring function, allowing the planner to skip
small details without losing its non-greedy behavior.

The next step in this line of work is to design an in-
verse covisibility score for a state-of-the-art map-predictive
method. We stress that it must be map predictive, as we
have not demonstrated any advantage to inverse covisibility
scoring without map prediction. A second line of inquiry
is to predict volumetric data, e.g., [17], [18], as exploration
state typically is represented.
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